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Abstract
A unified way to model derivative securities.

Every continuous time arbitrage-free model of instrument prices (Xt) with
corresponding cash-flows (Ct) has the form

XtDt = Mt −
∑
s≤t

CsDs

where (Mt) is a vector-valued martingale indexed by market instruments and
(Dt) are positive, adapted functions. If the continuously compounded forward
rate at t is ft then Dt = exp(−

∫ t
0 fs ds). If trading times are discrete, T = {tj},

then Dtj = exp(−
∑
i<j fi ∆ti) where ∆ti = ti+1 − ti and fi is the repurchase

agreement rate over that interval.

For example, the Black-Scholes/Merton model for a bond and stock with no
dividends is given by Mt = (r, s exp(σBt − σ2t/2)) and Dt = exp(−ρt) where
(Bt) is standard Brownian motion. There is no need for self-financing portfolios,
Ito’s Lemma, much less partial differential equations when using the Unified
Model.

The Unified Model provides a framework for a rigorous mathematical approach
to understanding how to value, hedge, and manage risk using realistic trading
conditions.

Introduction

The value of a barrier option in the Black-Scholes/Merton model that knocks in
the second time the underlying hits the barrier is equal to the value of the option
that knocks in the first time the underlying hits the barrier. In fact, the value is
the same if it knocks in on the n-th time it hits the barrier for any n > 0! This
is a mathematical artifact of Brownian motion having infinite total variation on
any interval and the ridiculous notion that continuous time hedging is possible.

When a model in mathematical physics does not fit observations it indicates
there is a flaw in the model. The Unified Model can be used to remedy the above
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flaw in the classical theory of mathematical finance. It places instrument prices
and cash-flows on equal footing to clarify fundamental results like cost-of-carry,
put-call parity, and the fact futures quotes are a martingale.

It also highlights the fundamental problem faced by all traders: when and how
much to hedge.

Notation

If A is an algebra on the set Ω we write X : A → R to indicate X : Ω → R
is A-measurable. If A is finite then the atoms of A form a partition of Ω and
being measurable is equivalent to being constant on atoms. In this case X is a
function on the atoms of A. The space of bounded A-measurable functions is
denoted B(A).

A filtration on Ω indexed by T ⊆ [0,∞) is an increasing collection of algebras
(A)t∈T . The algebra At represents the information available at time t.

A process Mt : At → R, t ∈ T , is a martingale if Mt = E[Mu|At] = Et[Mu] for
t ≤ u, where E[X|A] is the conditional expectation of the random variable X
given the algebra A.

A stopping time is a function τ : Ω → T satisfying {τ ≤ t} ∈ At for all t ∈ T .
The algebra Aτ is the collection of subsets E ⊆ Ω with E ∩ {τ ≤ t} ∈ At for all
t ∈ T . Stopping times can’t peek into the future.

Unified Model

Let T ⊆ [0,∞) be the set of trading times. As is customary we assume a sample
space, probability measure, and filtration are given, 〈Ω, P, (At)t∈T 〉.

Let I be the set of market instruments available for trading. Instrument prices are
denoted by Xt : At → RI and their corresponding cash-flows by Ct : At → RI ,
for t ∈ T . We assume, as is true in the real world, that prices and cash-flows are
bounded.

Instrument trading is assumed to be perfectly liquid and divisible: every in-
strument can be bought or sold at the given price in any amount. Cash flows
are associated with owning an instrument: stocks have dividends, bonds have
coupons, futures have margin adjustments.

A trading strategy is a finite collection of strictly increasing stopping times (τj)
and trades Γj : Aτj → RI indicating the number of shares to trade in each
instrument. Trades accumulate to a position ∆t =

∑
τj<t

Γj =
∑
s<t Γs where

Γs = Γj when s = τj . Note that trades at time t are not included in the position
at time t. It takes time for trades to settle before being included in the position.
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The value (or mark-to-market) of a position at time t is Vt = (∆t + Γt) · Xt:
how much you would get from liquidating the existing position and the trades
just executed at price Xt, assuming that is possible. The amount generated by
the trading strategy at time t is At = ∆t · Ct − Γt ·Xt: you receive the cash
flows associated with your existing position and pay for the trades just executed
at the current market price.

A model is arbitrage-free if there is no trading strategy with
∑
j Γj = 0, Aτ0 > 0,

and At ≥ 0 for t > τ0: it is impossible to make money on the first trade and
never lose until the strategy is closed out.

Theorem. (Fundamental Theorem of Asset Pricing) A model is arbitrage-free
if and only if there exist deflators Dt : At → (0,∞), for t ∈ T , with

XtDt = E[XvDv +
∑
t<u≤v

CuDu|At].

If Ct = 0 for t ∈ T then deflated prices are a martingale. If Et[XvDv] → 0 as
v →∞ then deflated prices are the expected value of deflated future cash-flows,
à la Dodd-Graham. We can assume D0 = 1 by dividing all deflators by D0.

One consequence of the displayed equation above and the definition of value and
amount is

VtDt = E[VvDv +
∑
t<u≤v

AuDu|At].

Note how value corresponds to prices and amount corresponds to cash-flows in
the two formulas above. The second formula is the key to valuing derivatives.
A derivative is a contract specifying payments at given times. If a trading
strategy produces these payments as amounts then its value is given by this
formula. Trading strategies create synthetic market instruments. Synthetic
market instruments can become actual market instruments that are then included
in I. The Unified Model can incorporate those without any changes.

Proof. If u > t is sufficiently small then ∆t + Γt = ∆u and XtDt = Et[(Xu +
Cu)Du]. Since Vt = (∆t + Γt) ·Xt

VtDt = (∆t + Γt) ·XtDt

= ∆u · Et[(Xu + Cu)Du]
= Et[(∆u ·Xu + ∆u · Cu)Du]
= Et[(∆u ·Xu + Γu ·Xu +Au)Du]
= Et[(Vu +Au)Du]

where we use ∆u · Cu = Γu ·Xu +Au and (∆u + Γu) ·Xu = Vu in the last two
equalities respectively. The second displayed formula above follows by induction.

Assuming no arbitrage, Vτ0Dτ0 = Eτ0 [
∑
t>τ0

AtDt] ≥ 0. Since Dτ0 is positive
and Vτ0 = Γτ0 ·Xτ0 = −Aτ0 we have Aτ0 ≤ 0. This proves the “easy” direction
of the theorem.
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There is no need to prove the “hard” direction since we have a large supply of
arbitrage free models. Every model of the form

XtDt = Mt −
∑
s≤t

CsDs

where Mt : At → RI is a martingale and Dt : At → (0,∞) is arbitrage-free.

XtDt = Mt −
∑
s≤t

CsDs

= Et[Mv −
∑
s≤t

CsDs]

= Et[Mv −
∑
s≤v

CsDs +
∑
t<u≤v

CuDu]

= Et[XvDv +
∑
t<u≤v

CuDu].

Examples

We illustrate the Unified Model in particular cases.

Black-Scholes/Merton

The sample space is Ω = C[0,∞), P is Wiener measure, and At is the smallest
sigma-algebra for which {Bs : s ≤ t} are measurable, where Bt(ω) = ω(t) is
standard Brownian motion.

The trading times are T = [0,∞) and the instruments are a bond with constant
continuously compounded rate ρ and a stock paying no dividends with volatility
σ. The Black-Scholes/Merton model is given by Mt = (r, seσBt−σ2t/2) and
Dt = e−ρt. It is trivial to extend this to the case when ρ is a function of time.

Note that the Unified Model does not require Ito’s Lemma or partial differential
equations. Although some mathematicians who have invested their time learning
these topics may be disappointed, their students will be glad these are no longer
necessary.

Repurchase Agreement

In a discrete time model with T = {tj} a repurchase agreement at time tj ,
has price Xtj = 1 and cash flow Ctj+1 = Rj where Rj = exp(fj∆tj) is the
realized return for the repo rate fj . The canonical deflator Dtj = 1/Πi<jRi =
exp(−

∑
i<j fi ∆i) provides an arbitrage-free model for repos since 1Dtj =

Etj [RjDtj+1 ].
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The continuous time analog is Dt = exp(−
∫ t

0 fs ds) where (ft) is the continuously
compounded forward rate.

Zero Coupon Bond

A zero coupon bond maturing at time u has a single cash flow Cu = 1 at time u.
Its price at time t, Dt(u), satisfies Dt(u)Dt = Et[1Du] so Dt(u) = Et[Du]/Dt.
The dynamics of all fixed income instruments are determined by the deflators:
cash deposits, forward rate agreements, swaps, puts, floors, swaptions, etc.

Cost of Carry

A forward on an instrument S expiring at t with strike k has a single cash-flow
Ct = St − k at expiration. The at-the-money forward is the strike f that makes
the forward price zero.

Consider any arbitrage-free model with X0 = (1, s, 0) and Xt = (R,St, St − f).
We have (1, s, 0) = E[(R,St, St − f)Dt] assuming D0 = 1. If R is constant,
1 = E[RDt] so E[Dt] = 1/R. Since s = E[StDt] and 0 = E[(St − f)Dt] we have
0 = s− f/R. The formula Rs = f is the cost of carry and relates the spot price
of S to its forward.

Put-Call Parity

A put option on an instrument S expiring at t with strike k has a single cash-
flow Ct = max{k − St, 0} at expiration. A call option has a single cash-flow
Ct = max{St−k, 0} at expiration. Note max{St−k, 0}−max{k−St, 0} = St−k.

Consider any one-period arbitrage-free model with X0 = (1, s, p, c) and Xt +
Ct = (R,St,max{k − St, 0},max{St − k, 0}). For any deflator with D0 = 1 we
have (1, s, p, c) = E[(R,St,max{k − St, 0},max{St − k, 0})Dt]. Assuming R is
constant, 1 = E[RDt] so E[Dt] = 1/R. Since p = E[max{k − St, 0}Dt] and
c = E[max{St−k, 0}Dt] we have c−p = E[(St−k)Dt] = s−k/R. This formula
is called put-call parity. It holds for every arbitrage-free model and will be the
first thing a trader tests when presented with a new model.

Futures

A futures on an instrument S expiring at t has a cash-flow at every margin
calculation date (tj)nj=0. The futures quote at expiration t = tn is Φn = St. The
cash-flow at time tj is Ctj = Φj − Φj−1, 1 ≤ j ≤ n, where Φj is the futures
quote at tj .
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The price of a futures is always zero. If the model is arbitrage-free then 0 =
Etj−1 [(Φj −Φj−1)Dtj ]. If Dtj is Atj−1 measurable then Φj−1 = Etj−1 [Φj ] so the
futures quotes (Φj) are a martingale. This holds when Dtj = exp(−

∑
i<j fi ∆i).

American Option

An American option is an option that the holder can exercise at any time up to
expiration. A call option on S expiring at t with strike k has a single cash-flow
Cτ = max{Sτ − k, 0} at time τ where τ ≤ t is chosen by the option holder.

The space of outcomes must include this possibility. Given a model for the
underlying 〈Ω, P, (At)〉 let Ω′ = Ω × [0, t] where (ω, τ) indicates the option is
exercised at time τ given the underlying determined by ω.

The filtration must also be augmented. Let Ts be the smallest algebra on [0, t]
containing the singletons {u} for u ≤ s and the set (s, t]. If τ ≤ s then τ is known
exactly, otherwise it is only known that s < τ ≤ t. The algebra A′s = As × Ts
represents the information available at time s. Note that at time s it is known if
τ = s. The option holder decides when to exercise.

Extending the measure P on Ω to P ′ on Ω′ while keeping the model arbitrage-free
is not trivial. It would imply a solution to the American option pricing formula
which (currently) does not have a closed form.

Remarks

Given a derivative paying Āj at times t̄j how does one find a trading strategy
(τj) and (Γj) with At = Āj at times t = t̄j and zero otherwise?

The initial hedge is determined by V0 = E[
∑
t̄j>0 ĀjDt̄j ] which can be computed

using the derivative payments specified in the contract and the deflators of the
model. Since V0 = Γ0 ·X0 we have Γ0 = dV0/dX0 where the right-hand side is
the Fréchet derivative of V0 : RI → R with X0 7→ Γ0 ·X0.

At any time t we have Vt = Et[
∑
t̄j>t

ĀjDt̄j ]/Dt which can be computed using
the specified derivative payments and the deflators. Since Vt = (∆t + Γt) ·Xt we
have ∆t + Γt = dVt/dXt where the right-hand side is the Fréchet derivative of
Vt : B(At,RI)→ B(At) with Xt 7→ (∆t + Γt) ·Xt.

This is classical Black-Scholes/Merton hedging with ∆ being delta and Γ being
gamma, however there is one major difference: there is no guarantee this hedge
will replicate the option. As any trader knows after the second day on a trading
floor, no hedge is perfect.

The Unified Model brings this real world problem to the forefront. It is not
possible to hedge continuously. Traders decide when and how much to hedge
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based on available information. The job of mathematical finance practitioners is
to help them figure out when (τj) and how (Γj) to adjust their hedge.

This model does not provide a solution, only a framework for a rigorous mathe-
matical approach to understanding how to value, hedge, and manage the risk
involved with trading market instruments under realistic conditions.
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